Exponential decay in one‐dimensional Type II/III thermoelasticity with two porosities
نویسندگان
چکیده
منابع مشابه
On (non-)exponential decay in generalized thermoelasticity with two temperatures
We study solutions for the one-dimensional problem of the Green-Lindsay and the Lord-Shulman theories with two temperatures. First, existence and uniqueness of weakly regular solutions are obtained. Second, we prove the exponential stability in the Green-Lindsay model, but the nonexponential stability for the Lord-Shulman model.
متن کاملExponential Decay in Nonsimple Thermoelasticity of Type Iii
This paper deals with the model proposed for nonsimple materials with heat conduction of type III. We analyze first the general system of equations, determine the behavior of its solutions with respect to the time and show that the semigroup associated with the system is not analytic. Two limiting cases of the model are studied later.
متن کاملEnergy decay to Timoshenko's system with thermoelasticity of type III
L.H. Fatori a,∗, J.E. Muñoz Rivera b and R. Nunes Monteiro a a Department of Mathematics, Universidade Estadual de Londrina, Campus Universitário, Londrina, CEP 86.051-990, Paraná, Brazil E-mails: [email protected], [email protected] b National Laboratory of Scientific Computations, LNCC/MCT, Rua Getúlio Vargas 333, Quitandinha, Petrópolis, CEP 25651-070, RJ, Brazil and Instituto...
متن کاملDomination with exponential decay
Let G be a graph and S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) − S, we define d(u, v) = d(v, u) to be the length of a shortest path in 〈V (G)−(S−{u})〉 if such a path exists, and∞ otherwise. Let v ∈ V (G). We define wS(v) = ∑ u∈S 1 2d(u,v)−1 if v 6∈ S, and wS(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have wS(v) ≥ 1, then S is an exponential dominating set. The smallest cardinalit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in the Applied Sciences
سال: 2020
ISSN: 0170-4214,1099-1476
DOI: 10.1002/mma.6438